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Relationships for mass transfer coefficient in turbulent liquid film flow involving the inlet section 
have been derived theoretically. It was found that previously published experimental results were 
well explained by this theory. 

Recently, the inlet portion film flow is of the growing interest l
-

14. The results of 
accelerated film flow over vertical and inclined surfaces can be used in studying the 
hydrodynamics and mass transfer in packed columns where a liquid film flows over 
the packing material, though those of the inlet portion hydrodynamics and mass 
transfer can be used directly for heat and mass transfer apparatus. 

Various solution methods with various degrees of accuracy have been used in 
studying the inlet portion liquid film hydrodynamics. The most comprehensive study 
has been made4

• The inlet portion liquid film hydrodynamics and mass transfer are 
investigated by the method suggested in14. 

A system of equations describing the turbulent liquid fi lm flow consists of the 
Navier- Stokes equations and that of convective diffusion and may be written in the 

form 1S : 

U - + v - = g sm 0(1 - - - + - Ver -
OU ou . 1 op a ( au) 
ox oy (] ox oy oy 

(l) 

~+~=o 
ox oy 

(2) 

at 

y =O , U=v =o, c=O 

at 

y = b(x), ou/oy = 0, C = C1 , (3) 
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where ver = v + VI' Der = D + Dt and v, D, Vt, Dt are the transport coefficients for 
the molecular and turbulent liquid film flow conditions, respectively, ('£1 is the wetted 
channel slope angle. 

The fact that the mean film thickness b(X) which varies with the distance from the 
inlet is obtained from a solution makes the solution of the problem (1)-(3) difficult. 

If VI = Dt = 0, then Ver = v, Der = D. In this case the system of Eqs (1)-(3) 
along with the boundary conditions (3) describes mass transfer into the inlet portion 
laminar liquto film. 

We shall illustrate the method suggested in14 with reference to this problem. Con­
sider a case when mass transfer resistance is concentrated in the liquid phase; the 
concentration at the liquid film surface C1 is taken to be constant. The velocities u, v 

and transversal coordinate y in the system of Eqs (1) - (2) can be made dimensionless 
in two different ways: 1) the instant velocity may be related to the velocity in the 
initial cross-section and the transversal coordinate - -to the liquid efflux slot di­
mension; 2) the instant velocity may be related to the steady-state portion velocity 
and the transversal coordinate - to the steady-state portion film thickness. 

Eqs (1) - (3) and boundary conditions (3) have been made dimensionless using 
the second method, i.e. 

u = U oU ; x = bp Re x, y = bpy , e = C 1 C • (4) 

Eqs (1)-(3) and boundary condilions (3) as written in dimensionless variables take 
the form (the dashes are omitted): 

u ~ + v ~ = 3 + 02U , 

ox oy oy2 

~ + ~ = 0, 
ox oy 

(5) 

oc ac 1 ole 
U-+V-=--, 

aX oy Pr ay2 
(6) 

y=o, u=v=o, e=O; x=o, e=O; 

y = H(X)/b p , au/oy = 0, c = 1 . (7) 

To solve the problem we shall use the method described in14. For this purpose the 
film velocity profiles u(x, y) and concentrations e(x, y) can be presented in the form: 

N 

<p(x, y) = L Alx) I/Ib) , (8) -
j=l 
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where 

q>(X, y) = u(x, y), c{x, y); tfJb) = Ub), NIb); 

Aix) = alx) , a1lx) 

469 

N is approximation number, uix), N1iy) arc complete systems of the functions for 
the velocity profiles and concentrations satisfying the boundary conditions. 

Consider N surfaces Yk{x). There is no liquid flow via each of these surfaces. Let 
Uk(X), vlilx) , ck(x) denote the velocity components and concentration at the Yk(X) 
surface, respectively. Then, under the conditions of the steady flow considered in 
this paper the following relationship is valid: 

Vk = Uk' OYk/8x, Ie = 1, 2, 3, ... , N . (9) 

Further on, from the flow rate conservation condition it follows: 

- uoy = o. a IYk 
ax Yk.-1 

(10) 

After substituting a finite diflerence expression for the integral in relationship (10) 
we obtain the equation for constant flow rate lines: 

(11) 

Eqs (5) and (6) with allowance for conditions (9), (10) take the form: 

(12) 

(13) 

In order to calculate the right-hand sides of Eqs (11)-(13) it is necessary to have the 
velocity and concentration derivatives with respect to y. These can be calculated 
using the representation of the velocity and concentration profiles in relationship (9) 
in terms of the complete function t//jk(X) systems. This system can be expressed by 
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means of different polynomials. In the present paper the Chebyshev and Legendre 
polynomials and those of the form: 

Uk = ~ (~)j _ (y~)j+l 
] YN YN 

are used. The Chebyshev polynomials in the complete system of the functions Uk 
and Nlk haxe been used in the form: 

(14) 

(15) 

where 

Note, that there is no significant difference in the calculation results obtained with 
the use of polynomials (14) and (15), however an accuracy required for the Chebyshev 
polynomials has been attained by a less num ber of terms. The Chebyshey polynomials 
have been chosen due to the fact that, first, these have the highest convergency, and 
second, the inaccuracies are distributed most advantageously in these polynomials , 
viz. uniformly over the whole range. Therefore all the further calculations are as 
a rule performed using the Chebyshev polynomials. 

We require the coincidence of the velocity and concentration determined by fornm­
la (8) with uk(x) and ck(x) on the lines Yk(X). Then for determining the coefficients 
Aj(x), aj(x), aI/X) for the velocity and concentration, respectively, we obtain the 
following system of linear algebraic equations: 

N 

CPk(X) = L Alx) t{ljk[Yk(X)] 
j~1 

After determining the value A j from the system of Eqs (16) on the lines Yk(X) we shall 
find the velocity and concentration derivatives with respect to Y by means of formula 
(8). 

The initial conditions should be prescribed at the cross-section x = O. It is possible 
to preset a velocity profile and then using it to determine Aj ; it is also possible to 
preset Aj and to determine thereby the initial profile in a liquid film cross-section. In 
the present work we have preset the velocity profile at the initial cross-section, both 
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the constant profile and that of parabolic being used in calculations. The computa­
tional grid over the liquid film section at x = 0 may be preset both the variable and 
uniform. In the present work we have used a uniform grid of computation lines at 
YlI.(x) = k/(N - 1), where N is approximation number. 

The system of Eqs (11) with boundary conditions (7) has been solved by the Runge­
-Kutta method with the constant and automatically variable steps. For smooth 
solutions a step value is of the order of 0'02, whereas in the cases when the second 
derivative has a considerably small parameter the computations show that the step 
value is of the order of 0·005. Note, that in some cases it is convenient to introduce 
a dimensionless variable of the type x = (j Re pz X, then in Eq. (13) the small para­
meter at the highest derivative vanishes. 

The aforementioned algorithm has been used to compute the velocity and con­
centration fields at the inlet portion, the film thickness over the wetted channel length 
and the mass transfer coefficient of liquid film. These values have been calculated 
in14 using the algorithm presented with the available results of experimental data. 

J 
HI', l, 

0'75 

FIG. 1 

Dependence of the Local Film Thickness on 
the Dimensionless Inlet Section Length 

Hlop: 11; 21'5; 34; 410; 50·5 . • Ex­
p(;rimental data3 for Hlop = 0·47. 
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FIG. 2 
Comparison of Numerical Solution (Solid 
Lines) with Experimental Datal3 

a Dimensionless film thickness; b di­
mensionless ratio of the local tangetial stress 
to the tangential stress at the stabilization 
section. • Re = qlv = 75; Ifli5p = 3.7; 
0455; 1; t. 180; 1-3. 
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Fig. 1 shows as an example the relationship between the dimensionless film thickness 
as a structural parameter of the column-type apparatus and the inlet portion dimen­
sionless length for different ratios of the slot width to the film thickness calculated by 
the Nusselt formula. The slot width has a significant effect on the accelerated film 

flow up to the ratio H/O" equal to 3. For H/o p ~ 3 the slot width, as it is seen from 
Fig. 1 (curves 3,4), does not in any way effect the accelerated film flow. 

Fig. 2 shows the comparison of the calculated dimensionless film thicknesses (Fig. 
2a) and dimensionless tangential stresses (Fig. 2b) for different slot dimensions 
with the experimental results 1 

3. 

From Fig. 1 it follows that the stabilization portions for the liquid film and tan­
gential stress coincide. The liquid film mass transfer has been calculated by the 
equality: 

D - = - uedy 
(
de) d fYN 

dy Y=YN dx ° ' 
{17} 

where u(x, y) and e(x, y) are found from the solution of the system ofEqs (11)-(13) 
with boundary conditions (7) . The mean mass transfer coefficient has been determined 
by the formula 

f3 = - ue dy, 1 fYN 

b ° 
(18) 

There b is certain characteristic length parameter. 

For the laminar liquid film flow its value is approximated by the following ex­
pression: 

f3 = 1·25 _uo__ 1 + 0·65 .10- 2 ~ • o.5Do.
5 J( 0 P) 

bo. 5 b 
(19) 

At b = I a .formula for the inlet portion liquid film differs from the known ones in 
an additional coefficient J(t + 0·65. 1O-20p Pe/b) that takes into account the inlet 
portion mass transfer. This number has an increasing effect on the liquid phase mass 
transfer coefficient along with the increase in the Pe = Pr Re number. 

The liquid film mass transfer coefficient calculated under the inlet portion wave 
formation conditions has been compared in14 with that obtained from the test using 
the results of the mass transfer investigation under the wave formation conditions 16. 

In mass transfer under the turbulent inlet portion fluid flow the effective transport 

coefficients in the system of Eqs (1) and (2) consist of two addends, i.e. vee = V + VO 

De[ = D + Do the turbulent transport coefficients VI ' DI differring significantly from 
those of molecular v, D over the film thickness excluding the wetted channel wall 
and liquid-gas interface. In the present paper the transport coefficients VI' DI for . 
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a liquid Iilm are assumed to be known and vary according to a parabolic law with the 
maximum midmost the film, i.e.: 

ver/v = 1 + VI/V = 1 + TB{11 - 112) 

Der/D = 1 + D,/D = 1 + TD(l1 - 112) (20) 

where TB = ab~/v, TD = TB Pr, Pr = v/D, 1'/ = y/b p , a is proportionality factor. 

As in 16 too, we assume that a depends on the following parameters 

a = aof((J, Q, v, ho, e, g), (21) 

where (J is the surface tension coefficient , (! is the liquid film density, ho is the mean 
thickness of turbulent fluid flow film, e is dissipation energy. The functional re­
lationship (21) can be represented in the form of the complex: 

a = ao ~ (h~e~)1 /2 
(f gv 

(22) 

where ao is proportionality factor. 

If ao is known, then the problem (1) - (2) is uniquely defined. It is not possible for 
the present to predict beforehand the proportionality factor by means of the theory 
of turbulent transfer in liquid films. Therefore in the present work it is determined by 
approximating the experimental data drawn from I2

-
22

. For solving the system (1) to 
(2) under boundary conditions (3) the following dimensionless constants are used: 

where Va is the mean velocity of turbulent liquid film flow, Re = (jpuo/v. 

The equality au/oy = 0 in (3) means the absence of interaction between the liquid 
film under turbulent flow and the gas How. The system (1) and (2) has been solved 
using the method described above. We shall present certain results of the mass 
transfer calculation in a turbulent liquid film. The mean coefficient of liquid film 
mass tranfer is determined by the formula: 

/31 = - uc dy = ~ uc dy = ~ TIR !x=b/ OpRePr , 1 fYN 
V (j fYN 

V (j 

bob 0 b 
(24) 

where Pe = Re Pr, b is certain characteristic length unit to be used in averaging the 
local mass transfer coefficient. The velocity and concentration values in formula (24) 
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that are the functions of x and yare obtained from a numerical solution of the system 
(1)-(2). The numerical solution results of the system (1)-(2) obtained using 
a BSEM-6 computer are approximated by the formula 

(25) 
or 

/32 = 1·37 + 2·28a6/2 ~ I? ~ _ 0 _ __ . 
[ 

<5 ()1/2 (h )1/4J U1/2 DI/2 

" V
1/2 

(J' gv b 1/2 
(26) 

Not~, that at TB --+ 0 formula (26) approximates that known for the coefficient of 
mass transfer into a laminar liquid film. The inlet portion value according to (8) is of 
the form: 

(27) 

Substitutirig (27) into (26) we obtain 

(28) 

where 

A = 1·37/k1/2 • B = 2·28(ao/k)1 /2. (29) 

In order to express the dissipation energy in terms of the mean velocity U 0 and tur­
bulent liquid film thickness ho we shall use the relationship e = gUo. A number of 
formulas is known for approximating U 0 and Ito in the case of turbulent conditions. 
Using the empirical formulas obtained in23 relationships (26) and (28) can be reduced 
to the following form: 

(30) 

1/2 ( )1/2 (U h )3/4 
/32/D1/2 = A Vop + B ~ (gV)1/2~. ' (31) 

where A and B are as before given by formula (29). From formulas (30) and (31) it 
follows that the mass transfer coefficient is inversely proportional to rI. We have 
derived theoretically the same relationship in ref.24 for the liquid film wavy down­
flow condition. 

We shall now calculate the mass transfer coefficient without any regard for the 
inlet portion and also under the condition that a distributed substance concentration. 
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does not depend on the longitudinal coordinate that is valid for the infinitely long 
pipe. In this case the convective diffusion equation takes the form: 

d de 
- [(1 + TD(Y - y 2

)] - = 0, 
dy dy 

(32) 

where 

(33) 

Therefore relationship (33) is of the same form as at the inlet portion, but the 
proportionality factor may be different. The boundary conditions will be selected 
as follows: 

e = Cp at y = 0 (on the surface) 

e = C1 at y = 1 (at the wall) 

e = C1 at y --t 00 (far from the surface) 

(34) 

(35) 

(36) 

The solution of Eq. (32) with boundary conditions (34) and (35) means that the 
diffusing substance is diSTributed over the entire film thickness and under boundary 

60~----~----~--r---~ 

fJ&ID 2' 

FlO. 3 

Dependence of PfJ /D on Re = 4q/v for the 
El{perimental Data of Various Authors: 
1 (reL 2D); 2 (ref.22); 3 (ref. IS); 4 (ref. 1 9). 

Dotted lines - calculated from equations. 
(1' (40), 2' (3), for b = I. 
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conditions (34) and (36) it means that the variation in concentration occurs only 
within the diffusive layer adjacent to the phase interface. The calculation performed 
shows that final results are in practice the same and have the form : 

(37) 

or expressin~, the dissipation energy in terms of the mean velocity, we obtain: 

(38) 

where A1 = Q'63a01' 

Formulas (30), (31) and (38) contain the constant coefficients which have been 
determined on the basis of the experimental data18

,22. Their numerical values are: 

(39) 

If the inlet portion length calculated by formula (27) with allowance for (39) is less 
than the tube length I, the mean mass transfer coefficient should be cal~ulated by the 
formula ; 

P "- P Ibx P 1 - lb. .P - 2, + 3 ~-1- ' (40) 

where P2 and P3 are defined by formulas (31) and (38) with allowance for the coef­
ficients of (39). Fig. 3 shows the mass transfer coefficients as calculated by formula 
(40); Curve l' is for the tube of I = 600 cm (ref. 22

). As it follows from Fig. 3, there 
is a satisfactory agreement between the theory and experiment. If the initial portion 
length und~r the film flow condition in question is larger than tube length, then the 
latter becomes to be the characteristic linear dimension. For this case the calculation 
of the mass transfer coefficient by formula (30) with regard for ao from relationship 
(39) is given in Fig. 3 (curve 2'). From this figure it is clear that the theory satisfactorily 
agrees with the experimental data20

• 

For the turbulent flow the value (ip in formulas (28), (29) and (31) was equal to the 
ultimate film thickness corresponding to the transition to turbulent regime. We took 
the value (ip = 0·053 cm that corresponded to Re = 4g/v = 1500. 
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